Despite positive effects of fertilization as experienced in the SCFDP Rehabilitation through fertilization, still farmers don’t fertilize their coconut, due probably to:
- lack of capital, fluctuating/low price of copra, and
- the long period of waiting before return to investment is realized

Hence, a 10-year study was conducted to test different fertilization frequencies/cycles from transplanting to early bearing stage hopefully to reduce fertilizer cost.

This was premised on previous knowledge that fertilizers applied on coconut have residual effects the following years (Magat et al 1992, Magat et al. 1993 and Maravilla 1987)

The technology is most likely applicable in:
- Loamy to clayey soils
- Coconut grown in soils with high potassium, phosphorus, magnesium, calcium and micronutrients (boron, zinc, copper, manganese & iron)
- Wet growing zones (not more than 3 consecutive dry months)
- Areas which are highly deficient in soil nutrients which become a major factor why the coconut palms have low yields.

Table 1. Accumulated 10-yr cost of fertilizer and labor in fertilizer application (cost that vary) per ha.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 1-Annual application</td>
<td>P25,629.89</td>
</tr>
<tr>
<td>Scheme 2-Fert. skipped every 3 yrs.</td>
<td>17,578.99</td>
</tr>
</tbody>
</table>

% reduction (savings) from Scheme 1 to Scheme 2: 31.41
Cash flow analysis reveal that the two schemes are profitable as NPVs are positive, with BCRs of 1.0 or better and IRR of more than prevailing interest rate. (NPV – net present value; BCR – benefit cost ratio; IRR – internal rate of return)

Sensitivity analysis indicate that scheme 2 can only be profitable at copra price of at least P8.50/kilo.

Sources of Information:

Maravilla, J.N. 1987. Yield improvement and residual effects on coconut due to NPK fertilization. FCSSP Los Baños, Laguna.